Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Angela Celli, Donato Donati* and Fabio Ponticelli

Dipartimento di Chimica, Universitá di Siena, Via A.Moro, 53100 Siena, Italy

Correspondence e-mail: donati@unisi.it

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.056$
$w R$ factor $=0.139$
Data-to-parameter ratio $=13.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1-[(2RS,3RS)-4-Acetyl-2-hydroxy-3-(5-methoxy-4-methyl-3-phenylpyrazol-1-ylamino)-2,5-dimethyl-2,3-dihydrofuran-3-yl]ethanone

The title compound, $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5}$, contains a pyrazole ring and a dihydrofuran ring connected by an NH bridge. The pyrazole ring is planar, while the dihydrofuran ring adopts a twist conformation. The two rings are linked by an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. In the crystal structure, the intermolecular hydrogen-bond network forms chains parallel to the b axis.

Comment

Beside their synthetic utility, some 1-aminopyrazoles display interesting antidepressive, analgesic, antihistamine and spasmolitic actions (Adembri et al., 1973; Jarrean \& Koenig, 1981). Antifungal activity has been discovered for the 5-nitrofurfuryl derivative of N -aminopyrazole (Mester et al., 1988). Structural features of the parent compound have recently been investigated both experimentally and computationally using ab initio methods (Jimenez et al., 1999). The title product, (I), was obtained in quantitative yield and, to determine the relative configuration of the chiral centers, an X-ray diffraction analysis was carried out. As shown in the Scheme and in Fig. 1, an intramolecular hydrogen bond between the hydroxyl group, $\mathrm{O} 1-\mathrm{H} 1$, and atom N3 links the two rings and accounts for the stereoselectivity of the reaction.

(I)

The pyrazole ring is planar [maximum deviation from mean plane 0.010 (2) \AA], and the bond lengths and angles do not differ significatly from those of similar compounds (Yamaguchi et al., 1989). The mean plane of the pyrazole ring makes an angle of $40.0(1)^{\circ}$ with the phenyl ring bonded at C13 and is perpendicular to the $\mathrm{C} 21-\mathrm{O} 5$ bond of the methoxy group at C11 [torsion angle $\mathrm{C} 21-\mathrm{O} 5-\mathrm{C} 11-\mathrm{C} 1291.4$ (4) ${ }^{\circ}$]. Atom N1 is pyramidal with the lone pair antiperiplanar with the $\mathrm{N} 2-\mathrm{N} 3$ bond [torsion angles $\mathrm{N} 3-\mathrm{N} 2-\mathrm{N} 1-\mathrm{H} 1-70.5(3)^{\circ}$ and $\mathrm{N} 3-$ $\left.\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 258.5(3)^{\circ}\right]$. This confirms a feature already observed for N -amino-pyrazole (Jimenez et al., 1999) and some simple derivatives (Yamaguchi et al., 1989).

The dihydrofuran ring (plane O1/C1/C2/C3/C4) adopts a twist conformation with puckering parameters (Cremer \& Pople, 1975) $\varphi=-129.8(9)^{\circ}$ and $Q=0.175$ (3) \AA, and asym-

Received 1 July 2003

Accepted 14 July 2003
Online 24 July 2003

Figure 1
View of (I) with the atomic numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 2
(100) projection of molecules linked by hydrogen bonds. Symmetryrelated chains have been omitted for clarity.
metry parameter (Nardelli, 1983) $\Delta_{2}(\mathrm{C} 4)=0.007$ (1). The plane of the acetyl group ($\mathrm{C} 3 / \mathrm{C} 6 / \mathrm{O} 2 / \mathrm{C} 7$) makes an angle of $14.7(1)^{\circ}$ with the plane of the furan ring.

The most significant intermolecular interaction is a hydrogen bond occurring between atoms H 1 and O 4 of the molecule translated by a unit cell along the b axis. Hence, the crystal structure is characterized as chains of parallel molecules. These chains appear to be further linked by a nonconventional hydrogen bond between atom O 4 and the C 5
methyl group (Table 2). This hydrogen-bond network is depicted in Fig. 2.

Experimental

3,4-Diacetylhex-3-ene-2,5-dione ($0.196 \mathrm{~g}, 1 \mathrm{mmol}$; Adembri et al., 1997) and 5-methoxy-4-methyl-3-phenylpyrazol-1-ylamine ($0,203 \mathrm{~g}$, 1 mol ; Adembri et al., 1972) were dissolved in dichloromethane $(10 \mathrm{ml})$ and left at room temperature for 24 h . The solid, obtained in quantitative yield, was filtered off and recrystallized from diethyl ether (m.p. 387 K).

Crystal data
$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}$
$M_{r}=399.44$
Monoclinic, $P 2_{d} / c$
$a=11.339$ (3) A
$b=7.444$ (2) \AA
$c=24.546$ (4) \AA
$\beta=97.61$ (1) ${ }^{\circ}$
$V=2053.6(8) \AA^{3}$
$Z=4$
$D_{x}=1.292 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 35 reflections
$\theta=4-38^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.4 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer
$h=-1 \rightarrow 13$
ω scans
$k=-1 \rightarrow 8$
4895 measured reflections
3612 independent reflections
1988 reflections with $I>2 \sigma(I)$
$l=-29 \rightarrow 29$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=25^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.139$
$S=1.01$
3612 reflections
276 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 4$	$1.345(3)$	$\mathrm{N} 3-\mathrm{C} 13$	$1.334(3)$
O1-C1	$1.469(3)$	$\mathrm{C} 12-\mathrm{C} 11$	$1.373(4)$
O5-C11	$1.349(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.415(4)$
N2-C11	$1.349(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.357(4)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.355(3)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.508(4)$
$\mathrm{N} 2-\mathrm{N} 1$	$1.400(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.599(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.484(4)$		
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 1$	$108.9(2)$	$\mathrm{N} 3-\mathrm{C} 13-\mathrm{C} 12$	$111.7(2)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{N} 1$	$122.2(2)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$107.9(3)$
N2-N1-C2	$116.0(2)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$103.4(2)$
$\mathrm{C} 13-\mathrm{N} 3-\mathrm{N} 2$	$104.8(2)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$101.5(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$108.1(3)$		
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2$	$58.5(3)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$-69.5(3)$
$\mathrm{C} 21-\mathrm{O} 5-\mathrm{C} 11-\mathrm{N} 2$	$-92.7(4)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.17	$3.056(3)$	150
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{~N} 3$	0.82	1.97	$2.720(3)$	152
$\mathrm{C} 5-\mathrm{H} 5 C \cdots \mathrm{O}^{\mathrm{ii}}$	0.96	2.52	$3.293(4)$	138

Symmetry codes: (i) $x, 1+y, z$; (ii) $x, y-1, z$.

The H atoms were introduced at calculated positions as riding atoms, with bond lengths of $0.82(\mathrm{O}-\mathrm{H}), 0.98(\mathrm{~N}-\mathrm{H}), 0.93(\mathrm{C}-\mathrm{H}$ aromatic) and $0.96 \AA\left(\mathrm{CH}_{3}\right)$. The $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$ and aromatic $\mathrm{C}-\mathrm{H}$ H -atom displacement parameters were refined. The displacement parameters for the methyl group H atoms were set equal to 1.2 times $U_{\text {eq }}$ of the parent atoms.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 1999).

The availability of the X-ray Diffractometer of the 'Centro di analisi e determinazioni strutturali' is gratefully acknowledged.

References

Adembri, G., Celli, A. M. \& Sega, A. (1997). J. Heterocycl. Chem. 34, 541-547.
Adembri, G., Ponticelli, F. \& Tedeschi, P. (1972). J. Heterocycl. Chem. 9, 12191225.

Adembri, G., Ponticelli, F., Tedeschi, P. \& Marini, M. (1973). Ger. Offen. 2301527; US Patent No. 394563 (1976).
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Jarrean, F. X. \& Koenig, J. J. (1981). Fr. Patent No. 2479219.
Jimenez, J. A., Claramunt, R. M., Mo, O., Yanez, M., Wehrmann, F., Buntkowsky, G., Limbach, H. H., Goddard, R. \& Elguero, J. (1999). Phys. Chem. Chem. Phys. 1, 5113-5120.
Mester, B., Claramunt, R. M., Gomez-Alarcon, G. \& Lorenzo, J. (1988). An. R. Acad. Farm. 54, 436-441.
Nardelli, M (1983). Acta Cryst. C39, 1141-1142.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97, University of Göttingen, Germany.
Siemens (1994). XSCANS Users Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1999). PLATON. Utrecht University, The Netherlands.
Yamaguchi, K., Ohsawa, A., Kaihoh, T., Okada, M., Kawabata, C. \& Igeta, H. (1989). Acta Cryst. C45, 1902-1904.

